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Abstract

DNA methylation has emerged as promising target linking environmental exposures and cancer. 

The World Trade Center (WTC) responders sustained exposures to potential carcinogens, resulting 

in increased risk of cancer. Previous studies of cancer risk in WTC exposed responders were 

limited by the deficiency in quantitative and individual information on exposure to carcinogens. 

The current study introduces a new exposure ranking index (ERI) for estimating cancer related 

acute and chronic exposures, which aimed to improve the ability of future analyses to estimate the 

cancer risk. An epigenome-wide association study (EWAS) based on DNA methylation and a 

weighted gene co-expression network analysis (WGCNA) were conducted to identify CpG sites, 

modules of correlated CpG sites and biological pathways associated with the new ERI. 

Methylation was profiled on blood samples using Illumina 450K Beadchip. No significant 

epigenome-wide association was found for ERI at an FDR 0.05. Several cancer related pathways 

emerged in pathway analyses for the top ranking genes from EWAS as well as enriched module 

from WGCNA. The current study was the first DNA methylation study which aimed to identify 

methylation signature for cancer related exposure in the WTC population. No CpG sites survived 

multiple testings adjustment. However, enriched gene sets involved in cancer, were identified in 

both acute and chronic ERIs, supporting the view that multiple genes play a role in this complex 

exposure.
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Introduction

Concern has arisen about the potential for increased risk of cancer among World Trade 

Center (WTC) responders, who sustained exposures to a complex mix of toxic chemicals 

that included multiple known and suspected human carcinogens (1). The combustion of jet 

fuel at high temperatures released soot, metals, benzene and other volatile organic 

compounds, and strong inorganic acids. The burning and subsequent collapse of the towers 

resulted in the release of particulate matter comprising asbestos, silica, cement dust, glass 

fibers, heavy metals like arsenic, beryllium, cadmium, chromium VI, nickel, polycyclic 

aromatic hydrocarbons, polychlorinated biphenyls, and polychlorinated dibenzofurans and 

dioxins (1–6). Evidence on increased cancer risk are emerging, in which the three cohort 

studies including WTC responders showed modest elevations in the risk of all cancers 

combined, with standardized incidence ratio (SIR) ranging from 1.06 to 1.14 across studies, 

and substantial overlaps in the 95% confidence intervals (7–10).

The lack of quantitative, individual information on exposure to potential carcinogens is an 

important limitation of previous analyses of cancer risk in WTC exposed populations. Two 

approaches can be considered, to overcome this limitation: an individualized, high resolution 

assessment of circumstances of exposure experienced by WTC responders, and the use of 

biomarkers of exposure. The current study combines these two approaches by introducing a 

new exposure ranking index for estimating cancer related exposure, in an effort to improve 

the ability of future analyses to elucidate the cancer risk experienced by this population.

The epigenome acts as an interface between the genome and the environment. It is plastic, 

changing with environmental exposures (11) thereby, regulating transcription. It has been 

suggested that perturbation in the epigenome in response to the environment is more stable 

than changes in the transcriptome (12) making epigenetic changes a potentially valuable tool 

for exposure assessment. One of the most studied epigenetic mechanisms is DNA 

methylation, a heritable epigenetic modification that does not change the underlying DNA 

sequence, and is involved in the regulation of gene expression (13). The most common 

methylation site in mammals is a cytosine located next to a guanosine (CpG). CpG islands 

are found mainly in the 5′ regulatory and promoter regions of genes; most are unmethylated 

in normal cells (14).

Epigenetic changes in tumor tissues have been linked to specific environmental exposures. 

For instance, a genes specific methylation in lung cancer was associated with tobacco 

smoking compared to alcohol consumption (15). Similarly, DNA methylation patterns were 

able to distinguish various environmental risk factors associated with hepatocellular 

carcinoma (16). Recently, specific epigenetic profiles have been identified in the methylome 

of peripheral blood DNA in patients exposed to a wide variety of environmental exposures 

including tobacco smoking (17), benzene (18), air pollution (19) and arsenic (20). This holds 

the tremendous promise that these epigenetic changes in the blood may be exploited as 

biomarkers of exposure. In this study, we identify DNA methylation patterns associated with 

WTC exposure. The identified DNA methylation signature could serve not only as a 

biomarker of exposure, but may give us insight into the susceptibility to develop a variety of 

diseases, including cancer.
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Methods

Development of WTC “Exposure Ranking Indices” (WTC-ERIs)

WTC “Exposure Ranking Indices” (WTC-ERIs) were developed for ranking potential 

exposures to hazardous substances related to post-9/11 activities of responders/workers. The 

calculation procedures and associated factors for estimating WTC-ERIs were adapted for the 

present work specifically to utilize information available for responders registered with the 

WTC General Responder Cohort (WTCGRC) (21). The exposure-related information in the 

WTCGRC dataset, collected through the Exposure Activities Questionnaire (EAQ) (see (8, 

22)) was combined with information developed through various studies that characterized 

exposure-relevant attributes and factors related to post-WTC activities ((1, 23–27). The 

WTC-ERI is an ordinal metric (see, e.g., (28, 29)) WTC-ERI values represent numerical 

scores derived via a Multi-Criteria Decision Analysis (MCDA) procedure (see, e.g. (30)) 

involving factors related to date, duration, location, type of activity, microenvironment, type 

and usage of personal protective equipment associated with each exposure event experienced 

by post-9/11 responders and workers. The index for a specific subject/worker is calculated 

by summing over the time-sequence of all WTC-related “exposure events” for that subject/

worker (where a typical exposure event is a work shift, though other types of events are 

possible). The MCDA score calculation procedure for the ERI was implemented primarily in 

Python 2.7 (www.python.org) for retrieving and analyzing information from the EAQ data 

available through the WTC-HPDC, complemented with a set of Matlab codes 

(www.themathworks.com), and is summarized in the following equation,:

ERIw = Fcloud, w + ∑
i = 1

M
f ∗time, i × f loc, i × f act, i × pi × Δti

+ ∑
j = 1

N
f ∗time, j × ϕloc, j × f act, j × p j × μ j × Δτ j

where

ERIw is the Exposure Ranking Index for a specific subject (responder or worker) identified by index w (who may be have been involved in 
different activities during different exposure events)

Fcliud, w is an exposure-related factor accounting for direct contact of the specific responder or worker with the dust cloud on September 11, 2001

fact is an exposure-related factor accounting for each type of WTC-related activity (search and rescue, cleanup, etc.)

i = 1, … M is a counting index for outdoor exposure events during day i where i=1 on 9/11/2001

j = 1, … N is a counting index for indoor (i.e. confined space) exposure events during day j where j=1 on 9/11/2001

f*
time is an “adjusted” exposure-related factor accounting for the time aspects of each exposure event [f*

time=function(fdate, i) where fdate, i is a 
factor associated with date relative to 9/11]

floc, ϕloc are exposure-related factors accounting for the locations where subject spend the majority of the exposure event (typically, but not 
exclusively, work shift)

μj is a microenvironmental adjustment factor reflecting any information, if available, specific to the confined space settings of the exposure 
event

p is a personal protective equipment (PPE) factor, reflecting the type and usage of PPE during the exposure event

Δti, Δτj is a factor reflecting the duration of exposure event during day i or j

It should be noted that ERI for each subject is explicitly calculated as the sum
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ERI = ERI_a + ERI_c

where ERI_a accounts for a subject’s acute exposure (exposed during 9/11/2001 to 

9/13/2001, i, j ≤ 3); ERI_c accounts for a subject’s chronic exposure (exposed during 

9/14/2001 to 6/30/2002, i, j > 3).

Time/Location-Related Factors—The values of the exposure factors related to the 

location, and the time period(s) spent at that location, for each worker/responder are 

summarized in Supplementary Table S1.

Dust cloud factor: A special “location” of particular concern is the area that was covered by 

the dust cloud on September 11, 2001. So, a worker/responder-specific exposure-related 

factor (Fcliud, w) accounting for direct contact with the dust cloud on September 11, 2001, is 

used, and a numerical value of 0 to 500 is assigned for each of six different exposure 

scenarios (corresponding to situations ranging from no contact with the cloud to “full 

immersion” without PPE).

Time-Related Factors: For the exposure-related factor (f*
time;) that accounts for the date, 

time and the duration of each exposure event, the following equation is used:

f ∗time =
tDay

tPosD
× tshift × f date

where

tDay is total number of working days during each time period

tPosD
is total number of possible working days during each time period derived from first and last day (if first day or last day is missing it is assumed 
that first day is 9/11/2001 and last day is 6/30/2002)

tshift is the number of work shifts in a day (typically one work shift is 8 hours)

fdate
is a day-specific exposure-related factor accounting for severity of environmental and microenvironmental conditions on the date of each 
exposure event

Location-Related Factors: Exposure-related factors (floc, ϕloc) accounting for the location 

of each exposure event consider differences in environmental and microenvironmental 

conditions in the general location areas identified on the map of Figure 1 (22). These factors 

are assigned numerical values in the range of 1 to 5 for different WTC work areas identified 

in the WTCGRC dataset.

Activity-Related Factors—Exposure-related factors (fact) that account for different types 

of WTC-related activities during an exposure event, are assigned numerical values in the 

range of 1 to 10 for the activity categories identified in the WTC General Responder Cohort 

(WTCGRC). These categories include barge workers, carpenters, dock builders, electricians, 

glaziers, insulation workers, laborers, mechanics, roofers, truck drivers, military, canteen 

service, EMT, fire fighters, morgue workers, police officers, etc. It is important to note here 

that, in cases where an activity type different from that corresponding to the job title is 
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reported in the questionnaire (e.g. “search and rescue” by a police officer), that activity is 

used to determine the appropriate factors for each of the activity categories listed in 

Supplementary Table 2.

Personal Protective Equipment (PPE) Related Formulas and Factors—
Exposure-related factors accounting for PPE type and usage are specific to (1) respirators 

and (2) dust masks. A total PPE factor is calculated during each exposure event by averaging 

of the factors for the PPE types used during the event:

pi =
∑

q = 1

n
pi, q

n

where

pi
is the total personal protective equipment (PPE) factor, reflecting the type and usage of all types of PPE used during an exposure event i 
(range from 1 to 0.1)

pi, q is the personal protective equipment (PPE) factor, reflecting the type and usage of a specific PPE type q used during the exposure event i

q = 1, … n is an index for different types of PPE

The only information available for the usage of “surgical/disposable mask” is the start date, 

so a constant PPE factor (0.55) for wearing a mask is assigned to the subject after and 

including their first day of wearing a mask.

For respirators the following general relation is used:

pi, q = 1 − f resp_type, q × f Freq_G, q ×
f Maint_R, q + f Maint_C, q + f Maint_Clean, q

3 × f seal, q

where

fresp_type is the type of respirator used

fFreq_G is the frequency of respirator use

fMaint_R is the frequency of respirator replacement

fMaint_C is the frequency of respirator maintenance (cartridge replacement)

fMaint_Clean is the frequency of respirator cleaning

fseal is the frequency of respirator seal cleaning

A numerical value is assigned for each aspect of PPE (these values are listed in 

Supplementary Table S3), with the highest value indicating best protection, most frequent 

usage, and correct usage of PPE. The lowest value indicates worst or no protection, most 

infrequent usage, and the incorrect usage of the respirator. Information on the type of 

respirator (full face or half face) is only available for the first week (9/11–18/2001); an 

average between full and half face respirator factors is used for days after 9/18/2001.

It should be noted that the quality of exposure relevant information in the WTCGRC 

database varied considerably. Therefore, based on evaluation of data gaps, uncertainties and 

resolution for the records of each subject, these subjects were classified in Groups A to E, 
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with Group A including the subjects with the most complete and unambiguous exposure 

data and Group E including those with the highest uncertainties (see details in 

Supplementary Methods and in Supplementary Table S4 on the classification criteria and the 

numbers of subjects assigned to each of the groups).

Participants

Participants were recruited through the Stony Brook WTC-Health Program, part of a 

consortium of Clinical Centers of Excellence in the New York metropolitan area established 

in 2002 to monitor and treat WTC-related conditions in responders to the WTC disaster (31). 

Enrollees with documented WTC experience were enlisted from extensive outreach efforts 

involving partnerships with volunteer organizations, labor unions, and public outlets. The 

current study was approved annually by the Committees on Research Involving Human 

Subjects at Stony Brook University (IRB number: 604113). Written informed consent was 

obtained.

The EAQ data for 6,110 subjects in the Stony Brook database, who are part of the larger 

WTCGRC, were processed using the MCDA classification and scoring system developed for 

WTC-ERI. Sufficient and consistent information for developing “unambiguous” estimates of 

ERI values was available for 2,625 of these subjects that were assigned to quality Group A, 

while another 1,390 subjects with less complete information - though sufficient to develop 

rankings - were assigned to Groups B and C (see Supplementary Methods. The distribution 

of acute and chronic ERI values for all Stony Brook subjects in Group A is shown in Figure 

2 (not including zero acute ERI values for 632 subjects). The ERI reflecting overall exposure 

of responders from post-WTC activities was calculated as the sum of the acute and chronic 

ERI values. High and low ERI were defined as ERI ≤ 356 and ERI ≥ 5599, where the values 

356 and 5599 were the top and bottom 10 percentile, respectively (8).

A subset of 185 responders with ERI values in groups A–C, assessed between February, 

2012 and March, 2014 were included in DNA methylation profiling. All participants 

provided blood samples for the epigenetics assays. Inclusion criteria were signed consent, 

sufficient English language skills to participate in a diagnostic interview, and being male. We 

included only males because females show notably different methylation patterns from 

males, and very few responders were females. Participants were 51.3 years of age on 

average at the time of blood drawing, predominantly Caucasian (83.2%) and non-smokers 

(95.7%) (Table 1).

Illumina Infinium Human Methylation450K Beadchip

Blood samples were obtained from each participant via venipuncture and sent to Roswell 

Park Cancer Institute for DNA extraction. Genomic DNA was isolated from 0.3 ml of whole 

blood using the Qiagen BioRobot Universal System and the QIAamp DNA blood BioRobot 

MDx Kit (Qiagen, Valencia, CA) following the manufacturer’s recommended protocol. 

DNA methylation profiling was performed by Roswell Park Cancer Institute using the 

Human Methylation 450K BeadChip (Illumina Inc., San Diego, CA). DNA extraction and 

methylation profiling were done blinded to group assignment. 500ng of high quality 

genomic DNA measured by picogreen quantitation (Life technologies, Grand Island, NY) 
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was bisulphite converted, amplified, fragmented and hybridized to the Illumina Infinium 

Human Methylation450K Beadchip using standard Illumina protocol. Data was processed 

using Illumina’s GenomeStudio methylation module (v1.9.0).

Data Preprocessing and Normalization

The 450K BeadChip methylation data from the GenomeStudio were imported into R (http://

cran.r-project.org). Preprocessing of methylation data at the 485,557 CpG sites were 

performed as follows. CpG sites with detection p-value > 0.001 are set to missing and CpG 

sites with more than 20% missing were filtered. Beta mixture quantile (BMIQ) 

normalization (32) was applied to the beta values for correction of bias due to the type I and 

type II probes. Non-specific, cross-hybridized CpG sites (33, 34), CpG sites overlapping 

with a SNP and CpG sites mapping to repeat regions were filtered. The final data consisted 

of 375,223 CpG sites.

Estimation of Blood Cell Type Proportions

Cell type proportions have been implicated in DNA methylation analysis of whole blood 

samples (35). The proportions of CD8T, CD4T, natural killer (NK), B-cell, monocytes 

(Mono) and granulocytes (Gran) were estimated using the R packages minfi and 

FlowSorted.Blood.450 based on the procedures described in (36). We normalized the sum of 

the proportions per sample to one, and include five out of six estimated cell types as 

adjustment factor in our epigenomewide association analysis. In addition, two-sample t-tests 

were used to assess the association between each cell type and ERI.

Statistical Method for Epigenomewide Association Analysis (EWAS)

To identify CpG sites associated with each phenotype, separate multple linear regression for 

each CpG site was first fitted on logit transformed beta values (log(β/(1 − β))) as response, 

and ERI, adjusting for age, race, smoking status and cell types. Statistical significance for 

CpG association with ERI was assessed via the Wald test. A false discovery rate (FDR) (37) 

was used to account for multiple testings.

Pathway and Gene Ontology Analysis

Pathway and gene ontology analysis were carried out using gometh function in 

Bioconductor package missMethyl (38). Since the number of CpG sites mapping to each 

gene varied in the Methylation 450K BeadChip, pathway and gene ontology analysis would 

be biased and inaccurate (39). gometh accounted for the varying number of CpG sites per 

gene by providing a prior probability for each gene based on gene length, followed by a 

modified hypergeometric test for over-representation of a gene set (40). We tested for over-

representation among the top 500 CpG sites from EWAS, against the background list of 

375,223 CpG sites. 290 KEGG pathways (minimum and maximum number of genes for 

each gene set were 15 and 500, respectively) were tested. Gene sets significant at FDR < 

0.05 were reported.

Kuan et al. Page 7

Eur J Cancer Prev. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://cran.r-project.org
http://cran.r-project.org


Weighted Gene Co-expression Network Analysis

The weighted gene co-expression network analysis (WGCNA) (41) was used to identify 

modules of correlated CpG sites on the logit transformed beta values. The Pearson 

correlation matrix was raised to the tenth power to achieve scale free topology. The 

minimum module size was set as 30, and the cut-offs for splitting and merging modules 

were 2 and 0.25, respectively. The methylation profiles for each module were represented by 

the eigenCpG. The association between module eigenCpG and ERI was performed using 

two-sample t-test, and the p-values were corrected via FDR. Over-representation analysis 

described above was also conducted on the CpG sites within the identified modules from 

WGCNA.

Results

Cell Type Proportions

Figure 3 displayed the association between the estimated cell type proportions and ERI. At 

nominal p-value 0.05, Bcell was higher in high ERI compared to low ERI group.

Epigenome-wide Association Analysis

The volcano plots in the top panel of Supplementary Figure S1 showed an approximately 

equal amount of hyper- and hypo-methylation pattern comparing high to low ERI. EWAS 

with ERI did not identify statistically significant CpG sites at FDR 0.05. 2 CpG sites were 

significant at nominal p-value 0.0001. Both CpG sites were hyper-methylated and mapped to 

3′UTR of GABRA4 and gene body of TUBB, respectively. Top 10 CpG sites were provided 

in Supplementary Table S5.

Pathway and Gene Ontology Analysis

Table 2 displayed the enriched KEGG pathways at FDR 0.05 for the top 500 CpG sites from 

EWAS with ERI. 21 KEGG pathways were found to be enriched among the top 500 CpG 

sites associated with ERI, including several cancer related pathways, i.e., PPAR, MAPK, 

Ras and PI3K-Akt signaling pathways.

Weighted Gene Co-expression Network Analysis

109 modules were identified from the WGCNA analysis. The eigenCpG of two modules 

(M1 and M2) were associated with ERI at nominal p-value < 0.05, but did not survive FDR 

control. M1 and M2 contained 388 and 59 CpG sites, respectively. 22 KEGG pathways were 

identified to be enriched among the 388 CpGs sites from M1 (Table 3), including B cell 

receptor signaling pathway, hematopoietic cell lineage, primary immunodeficiency and 

cytokine-cytokine receptor interaction, chemokine signaling pathway and several other 

cancer related pathways. No statistically significant pathway was identified for M2 module.

Discussion

While it might still be too early to see the full effect of WTC exposure on cancer incidence 

(10) it is important to assess the presence in this population of biomarkers which may be 

related to cancer risk. The current study introduced a new exposure index for estimating 
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cancer related exposure in the WTC cohort. The ERI allowed ranking quantitatively 

WTCGRC members in terms of their acute and chronic WTC exposure, and provided a 

refinement of previous approaches based on qualitative information (8, 42). A limitation of 

the present application of the ERI framework is that the available exposure data were not 

sufficient to attribute separate exposure to specific agents that contributed to mixture of 

WTC contaminants. Although certain measurements for specific agents at various locations 

are available, the resolution of exposure-relevant time/location data for the study subjects 

was too “coarse” to allow morespecific assessments and in any case strong correlations 

between the agents could have hampered any such effort.

This was the first DNA methylation study which aimed to identify methylation signature for 

cancer related exposure in the WTC population. Although no CpG site was significant after 

adjustment for multiple testings, pathway analysis revealed enriched gene sets involved in 

cancer. Specifically, several cancer related KEGG pathways were identified among the top 

ranking CpG sites associated with ERI and CpG sites within enriched module from 

WGCNA, including PPAR, Ras, MAPK, PI3K-Akt, mTOR and chemokine signaling, as 

well as pathways, proteoglycans, choline metabolism and microRNAs in cancer; although 

different overlapping genes were implicated. Ras proteins are involved in cellular signal 

transduction and the Ras genes (HRas, KRas and NRas) are the most common oncogenes in 

cancer (43). On the other hand, MAPK pathways are involved in stress signaling, and 

abberant MAPK pathways leads to uncontrolled growth and tumerigenesis (44). Akt has 

been shown to be the hub of signaling pathway implicated in tumorigenesis (45). These 

pathways are involved in the major hallmarks of cancer, including cell cycle, survival, 

motility and genomic instability (46). The identified cancer related enriched gene sets 

support the importance of pathway analysis compared to single-gene approach, i.e., the 

search for the combined effect of multiple genes acting in concert in this complex exposure.

Limitations

The current study had several strengths, including the use of an enhanced exposure 

assessment approach and the first and largest EWAS sample to date in environmental 

exposure study. Nonetheless, our findings must be considered in the context of several 

limitations. First, the methylation data was profiled on whole blood collected more than 10 

years post September 11 attack. Our analysis was conducted under the assumption that DNA 

methylation changes from high exposure is persistent over time, as methylation is known to 

be a stable marker (47). Second, unexposed control group was not available in this study. We 

sought to address this issue by selecting extreme exposure groups within our populations, 

i.e., top 10% versus bottom 10%. It is important to note that a comparison with an external 

population might be affected by selection bias and confounding, which are less likely to 

occur in internal comparisons within a relatively homogeneous population. Third, the 

sample size of our study is relatively small for EWAS. Fourth, our methylation analysis was 

performed in DNA samples derived from whole blood cells and were thus a mix of cell 

types. We controlled for the cell types heterogeneity using state-of-the-art statistical method, 

but future work needs to isolate and examine each cell type individually.
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Conclusions

The current study aimed to provide a better understanding of the relationship between 

epigenetic alteration and WTC-related exposure, with potential relevance to cancer risk. 

Enriched gene sets were involved in several biological pathways associated with cancer, 

including Ras, MAPK and PI3K-Akt signaling pathways. Taken together, this provides 

biological evidence supporting a possible association between exposure and risk of cancer 

among the WTC responders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
World Trade Center response and cleanup workforce locations (22)

Kuan et al. Page 13

Eur J Cancer Prev. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Distribution of ERI_a (acute ERI) and ERI_c (chronic ERI) values for 503 Stony Brook 

subjects with complete and consistent exposure-relevant information in the EAQ component 

of the WTC-HPDC dataset.
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Figure 3. 
Barplots of estimated cell type proportions. Each barplot depicts the mean value (y-axis) and 

1 standard error. The p-values on each cell type were computed from two-sample t-tests.

Kuan et al. Page 15

Eur J Cancer Prev. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kuan et al. Page 16

Table 1

Clinical characteristics. The p-values were computed from t-test (for age) and chi-squared test (for race and 

smoking status) comparing high to low ERI.

ERI
Low
n = 69

High
n = 116 P-value

Age (Mean (SD)) 54.3 (8.1) 49.5 (6.3) < 0.001

Race (N (%))

 Caucasian 61 (0.88) 93 (0.80) 0.213

 Other 8 (0.12) 23 (0.20)

Smoker (N (%))

 Yes 3 (0.04) 5 (0.04) 0.999

 No 66 (0.96) 111 (0.96)
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